Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
World J Gastrointest Oncol ; 16(4): 1465-1478, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660658

RESUMO

BACKGROUND: Colorectal cancer has a low 5-year survival rate and high mortality. Human ß-defensin-1 (hBD-1) may play an integral function in the innate immune system, contributing to the recognition and destruction of cancer cells. Long non-coding RNAs (lncRNAs) are involved in the process of cell differentiation and growth. AIM: To investigate the effect of hBD-1 on the mammalian target of rapamycin (mTOR) pathway and autophagy in human colon cancer SW620 cells. METHODS: CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration. Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation. Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway. Additionally, p-mTOR (Ser2448), Beclin1, and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis. RESULTS: hBD-1 inhibited the proliferative ability of SW620 cells, as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1. hBD-1 decreased the expression of p-mTOR (Ser2448) protein and increased the expression of Beclin1 and LC3II/I protein. Furthermore, bioinformatics analysis identified seven lncRNAs (2 upregulated and 5 downregulated) related to the mTOR pathway. The lncRNA TCONS_00014506 was ultimately selected. Following the inhibition of the lncRNA TCONS_00014506, exposure to hBD-1 inhibited p-mTOR (Ser2448) and promoted Beclin1 and LC3II/I protein expression. CONCLUSION: hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38518161

RESUMO

Background: Preeclampsia poses substantial risks during pregnancy. Exploring innovative treatment approaches like the combination of Nifedipine and aspirin is crucial for improving maternal and fetal outcomes. Objective: This study aims to assess the efficacy of nifedipine and aspirin tablets in treating preeclampsia and their impact on blood rheology and coagulation. Methods: We selected 96 pregnant patients with preeclampsia treated at our hospital between January 2020 and January 2022. The patients were randomly assigned to either the research group (n=48) or the control group (n=48). Nifedipine was administered to the control group, while the research group received a combination of Nifedipine and aspirin. We compared the overall treatment effectiveness and the incidence of unfavorable pregnancy outcomes between the two groups. Results: The research group exhibited a significantly higher overall treatment effectiveness rate (93.75%) compared to the control group (P < .05). After treatment, levels of fibrinogen (FIB), whole high-cut blood viscosity (HBV), whole low-cut blood viscosity (LBV), plasma viscosity (PV), and erythrocyte rigidity index (HGX) were significantly lower in the study group than in the control group (P < .05). Additionally, plasminogen time (PT) and activated partial thromboplastin time (APTT) were higher in the research group compared to the control group (P < .05). The research group also experienced a lower frequency of negative pregnancy outcomes (4.17%) in contrast to the control group (18.75%) (P < .05). Conclusions: The nifedipine and aspirin combination effectively treats pregnancy hypertension, enhancing both coagulation and hemorheology for improved maternal and fetal health outcomes.

3.
Vet Microbiol ; 292: 110048, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479301

RESUMO

The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.


Assuntos
Antibacterianos , Oxazolidinonas , Animais , Suínos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Lactococcus/genética , Enterococcus faecalis , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana/veterinária
4.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454157

RESUMO

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Coelhos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , Macrófagos , 60547 , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
5.
ACS Appl Bio Mater ; 7(3): 1569-1578, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38349029

RESUMO

The therapeutic efficacy of bone tumor treatment is primarily limited by inadequate tumor resection, resulting in recurrence and metastasis, as well as the deep location of tumors. Herein, an injectable doxorubicin (DOX)-loaded magnetic alginate hydrogel (DOX@MAH) was developed to evaluate the efficacy of an alternating magnetic field (AMF)-responsive, chemothermal synergistic therapy for multimodality treatment of bone tumors. The prepared hydrogel exhibits a superior drug-loading capacity and a continuous DOX release. This multifunctionality can be attributed to the combined use of DOX for chemotherapy and iron oxide nanoparticle-containing alginate hydrogels as magnetic hyperthermia agents to generate hyperthermia for tumor elimination without the limit on penetration depth. Moreover, the hydrogel can be formed when in contact with the calcium ions, which are abundant in bone tissues; therefore, this hydrogel could perfectly fit the bone defects caused by the surgical removal of the bone tumor tissue, and the hydrogel could tightly attach the surgical margin of the bone to realize a high efficacy residual tumor tissue elimination treated by chemothermal synergistic therapy. The hydrogel demonstrates excellent hyperthermia performance, as evidenced by in vitro cytotoxicity tests on tumor cells. These tests reveal that the combined therapy based on DOX@MAH under AMF significantly induces cell death compared to single magnetic hyperthermia or chemotherapy. In vivo antitumor effects in tumor-bearing mice demonstrate that DOX@MAH injection at the tumor site effectively inhibits tumor growth and leads to tumor necrosis. This work not only establishes an effective DOX@MAH system as a synergistic chemothermal therapy platform for treating bone tumors but also sheds light on the application of alginate to combine calcium ions of the bone to treat bone defect diseases.


Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Animais , Camundongos , Hidrogéis/farmacologia , Cálcio , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Hipertermia , Hipertermia Induzida/métodos , Alginatos , Íons , Fenômenos Magnéticos
6.
Bioact Mater ; 35: 534-548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414842

RESUMO

Rehabilitation and regenerative medicine are two promising approaches for spinal cord injury (SCI) recovery, but their combination has been limited. Conductive biomaterials could bridge regenerative scaffolds with electrical stimulation by inducing axon regeneration and supporting physiological electrical signal transmission. Here, we developed aligned conductive hydrogel fibers by incorporating carbon nanotubes (CNTs) into methacrylate acylated gelatin (GelMA) hydrogel via rotating liquid bath electrospinning. The electrospun CNT/GelMA hydrogel fibers mimicked the micro-scale aligned structure, conductivity, and soft mechanical properties of neural axons. For in vitro studies, CNT/GelMA hydrogel fibers supported PC12 cell proliferation and aligned adhesion, which was enhanced by electrical stimulation (ES). Similarly, the combination of aligned CNT/GelMA hydrogel fibers and ES promoted neuronal differentiation and axon-like neurite sprouting in neural stem cells (NSCs). Furthermore, CNT/GelMA hydrogel fibers were transplanted into a T9 transection rat spinal cord injury model for in vivo studies. The results showed that the incorporating CNTs could remain at the injury site with the GelMA fibers biodegraded and improve the conductivity of regenerative tissue. The aligned structure of the hydrogel could induce the neural fibers regeneration, and the ES enhanced the remyelination and axonal regeneration. Behavioral assessments and electrophysiological results suggest that the combination of aligned CNT/GelMA hydrogel fibers and ES could significantly restore motor function in rats. This study demonstrates that conductive aligned CNT/GelMA hydrogel fibers can not only induce neural regeneration as a scaffold but also support ESto promote spinal cord injury recovery. The conductive hydrogel fibers enable merging regenerative medicine and rehabilitation, showing great potential for satisfactory locomotor recovery after SCI.

7.
ACS Nano ; 18(9): 6975-6989, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377439

RESUMO

Regarded as one of the hallmarks of tumorigenesis and tumor progression, the evasion of apoptotic cell death would also account for treatment resistance or failure during cancer therapy. In this study, a Ca2+/Cu2+ dual-ion "nano trap" to effectively avoid cell apoptosis evasion by synchronously inducing paraptosis together with apoptosis was successfully designed and fabricated for breast cancer treatment. In brief, disulfiram (DSF)-loaded amorphous calcium carbonate nanoparticles (NPs) were fabricated via a gas diffusion method. Further on, the Cu2+-tannic acid metal phenolic network was embedded onto the NPs surface by self-assembling, followed by mDSPE-PEG/lipid capping to form the DSF-loaded Ca2+/Cu2+ dual-ions "nano trap". The as-prepared nanotrap would undergo acid-triggered biodegradation upon being endocytosed by tumor cells within the lysosome for Ca2+, Cu2+, and DSF releasing simultaneously. The released Ca2+ could cause mitochondrial calcium overload and lead to hydrogen peroxide (H2O2) overexpression. Meanwhile, Ca2+/reactive oxygen species-associated mitochondrial dysfunction would lead to paraptosis cell death. Most importantly, cell paraptosis could be further induced and strengthened by the toxic dithiocarbamate (DTC)-copper complexes formed by the Cu2+ combined with the DTC, the metabolic products of DSF. Additionally, the released Cu2+ will be reduced by intracellular glutathione to generate Cu+, which can catalyze the H2O2 to produce a toxic hydroxyl radical by a Cu+-mediated Fenton-like reaction for inducing cell apoptosis. Both in vitro cellular assays and in vivo antitumor evaluations confirmed the cancer therapeutic efficiency by the dual ion nano trap. This study can broaden the cognition scope of dual-ion-mediated paraptosis together with apoptosis via a multifunctional nanoplatform.


Assuntos
Neoplasias da Mama , Dissulfiram , Polifenóis , Humanos , Feminino , Dissulfiram/farmacologia , Cobre/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Peróxido de Hidrogênio/metabolismo , 60706 , Linhagem Celular Tumoral , Apoptose
8.
BMC Oral Health ; 24(1): 238, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355448

RESUMO

BACKGROUND: Facial nerve injury often results in poor prognosis due to the challenging process of nerve regeneration. Neuregulin-1, a human calmodulin, is under investigation in this study for its impact on the reparative capabilities of Dental Pulp Stem Cells (DPSCs) in facial nerve injury. METHODS: Lentivirus was used to transfect and construct Neuregulin-1 overexpressed DPSCs. Various techniques assessed the effects of Neuregulin-1: osteogenic induction, lipid induction, Reverse Transcription Polymerase Chain Reaction, Western Blot, Cell Counting Kit-8 assay, wound healing, immunofluorescence, Phalloidin staining, nerve stem action potential, Hematoxylin-eosin staining, transmission electron microscopy, and immunohistochemistry. RESULTS: Neuregulin-1 effectively enhanced the proliferation, migration, and cytoskeletal rearrangement of DPSCs, while simultaneously suppressing the expression of Ras homolog gene family member A (RhoA) and Microfilament actin (F-actin). These changes facilitated the neural differentiation of DPSCs. Additionally, in vivo experiments showed that Neuregulin-1 expedited the restoration of action potential in the facial nerve trunk, increased the thickness of the myelin sheath, and stimulated axon regeneration. CONCLUSION: Neuregulin-1 has the capability to facilitate the repair of facial nerve injuries by promoting the regenerative capacity of DPSCs. Thus, Neuregulin-1 is a significant potential gene in the reparative processes of nerve damage.


Assuntos
Polpa Dentária , Traumatismos do Nervo Facial , Humanos , Axônios , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Traumatismos do Nervo Facial/metabolismo , Regeneração Nervosa/fisiologia , Neuregulina-1/metabolismo , Células-Tronco/metabolismo
9.
Pharmacogenomics J ; 24(2): 5, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378770

RESUMO

OBJECTIVE: To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS: The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5'AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test. RESULTS: In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300. CONCLUSIONS: In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.


Assuntos
Paclitaxel , Neoplasias de Mama Triplo Negativas , Humanos , Trifosfato de Adenosina/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/genética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
10.
Nat Cancer ; 5(3): 500-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200243

RESUMO

Immunosuppressive myeloid cells hinder immunotherapeutic efficacy in tumors, but the precise mechanisms remain undefined. Here, by performing single-cell RNA sequencing in colorectal cancer tissues, we found tumor-associated macrophages and granulocytic myeloid-derived suppressor cells increased most compared to their counterparts in normal tissue and displayed the highest immune-inhibitory signatures among all immunocytes. These cells exhibited significantly increased expression of immunoreceptor tyrosine-based inhibitory motif-bearing receptors, including SIRPA. Notably, Sirpa-/- mice were more resistant to tumor progression than wild-type mice. Moreover, Sirpα deficiency reprogramed the tumor microenvironment through expansion of TAM_Ccl8hi and gMDSC_H2-Q10hi subsets showing strong antitumor activity. Sirpa-/- macrophages presented strong phagocytosis and antigen presentation to enhance T cell activation and proliferation. Furthermore, Sirpa-/- macrophages facilitated T cell recruitment via Syk/Btk-dependent Ccl8 secretion. Therefore, Sirpα deficiency enhances innate and adaptive immune activation independent of expression of CD47 and Sirpα blockade could be a promising strategy to improve cancer immunotherapy efficacy.


Assuntos
Antígeno CD47 , Neoplasias Colorretais , Camundongos , Animais , Antígeno CD47/genética , Antígeno CD47/metabolismo , Fagocitose , Macrófagos/metabolismo , Células Mieloides/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
11.
Mol Biol Rep ; 51(1): 86, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183539

RESUMO

BACKGROUND: PD-1 blockade has shown impressive clinical outcomes in colorectal cancers patients with high microsatellite instability (MSI-H). However, the majority of patients with colorectal cancer who present low microsatellite instability (MSI-L) or stable microsatellites (MSS) show little response to PD-1 blockade therapy. Here, we have demonstrated that Shikonin (SK) could induce cell death of CT26 cells via classically programmed and immunogenic pathways. METHODS AND RESULTS: SK promoted the membrane exposure of calreticulin and upregulated the expression of heat shock protein 70 (Hsp70). The upregulation of Hsp70 was dependent on ROS induced by SK and silencing of PKM2 in CT26 cells reverts ROS upregulation. Besides, SK synergizes with PD-1 blockade in CT26 tumor mice model, with the increase of intramural DC cells and CD8+ T cells. The expression of Hsp70 in tumor tissue was also increased in combinational SK plus αPD-1 therapy group. CONCLUSIONS: Our study elucidated the potential role of 'Shikonin-PKM2-ROS-Hsp70' axis in the promotion of efficacy of PD-1 blockade in CRC treatments, providing a potential strategy and targets for improving the efficacy of PD-1 blockade in colorectal cancer.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Espécies Reativas de Oxigênio , Regulação para Cima , Proteínas de Choque Térmico HSP70/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
12.
Mater Today Bio ; 24: 100942, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283983

RESUMO

Nerve guidance conduits (NGCs) have been widely accepted as a promising strategy for peripheral nerve regeneration. Fabricating ideal NGCs with good biocompatibility, biodegradability, permeability, appropriate mechanical properties (space maintenance, suturing performance, etc.), and oriented topographic cues is still current research focus. From the perspective of translation, the technique stability and scalability are also an important consideration for industrial production. Recently, blow-spinning technique shows great potentials in nanofibrous scaffolds fabrication, possessing high quality, high fiber production rates, low cost, ease of maintenance, and high reliability. In this study, we proposed for the first time the preparation of a novel NGC via blow-spinning technique to obtain optimized performances and high productivity. A new collagen nanofibrous neuro-tube with the bilayered design was developed, incorporating inner oriented and outer random topographical cues. The bilayer structure enhances the mechanical properties of the conduit in dry and wet, displaying good radial support and suturing performance. The porous nature of the blow-spun collagen membrane enables good nutrient delivery and metabolism. The in vitro and in vivo evaluations indicated the bilayer-structure conduit could promoted Schwann cells growth, neurotrophic factors secretion, and axonal regeneration and motor functional recovery in rat.

15.
Oncogene ; 43(3): 216-223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049565

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with a poor prognosis due to a lack of early detection. Indeed, the mechanisms underlying ESCC progression remain unclear. Here, we discovered that abnormal arginine metabolism contributes to ESCC progression. Based on transcriptomic and metabolomic analyses, we found that argininosuccinate synthetase 1 (ASS1) and argininosuccinate lyase (ASL) levels were increased in primary tumor tissues but decreased in lymph-metastatic tumor tissues. Intriguingly, FOXO3a was inversely correlated with ASS1 and ASL in primary and metastatic tumor tissues, suggesting that FOXO3a dissimilarly regulates ASS1 and ASL at different stages of ESCC. Silencing ASS1/ASL inhibited primary tumor growth and promoted metastasis. Conversely, overexpression of ASS1/ASL or increased arginine supply promoted tumor proliferation but suppressed metastasis. In addition, FOXO3a activation inhibited primary tumor growth by repressing ASS1 and ASL transcription, whereas inactivation of FOXO3a impeded metastasis by releasing ASS1 and ASL transcription. Together, the finding sheds light on metastatic reprogramming in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/genética , Arginina/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo
16.
Biochem Cell Biol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086039

RESUMO

Mitochondria play a critical role in nerve regeneration, yet the impact of gene expression changes related to mitochondria in facial nerve regeneration remains unknown. To address this knowledge gap, we analyzed the expression profile of the facial motor nucleus (FMN) using data obtained from the Gene Expression Omnibus (GEO) database (GSE162977). By comparing different time points in the data, we identified differentially expressed genes (DEGs). Additionally, we collected mitochondria-related genes from the Gene Ontology (GO) database and intersected them with the DEGs, resulting in the identification of mitochondria-related DEGs (MIT-DEGs). To gain further insights, we performed functional enrichment and pathway analysis of the MIT-DEGs. To explore the interactions among these MIT-DEGs, we constructed a protein-protein interaction (PPI) network using the STRING database and identified hub genes using the Degree algorithm of Cytoscape software. To validate the relevance of these genes to nerve regeneration, we established a rat facial nerve injury (FNI) model and conducted a series of experiments. Through these experiments, we confirmed three MIT-DEGs (Myc, Lyn, and Cdk1) associated with facial nerve regeneration. Our findings provide valuable insights into the transcriptional changes of mitochondria-related genes in the FMN following FNI, which can contribute to the development of new treatment strategies for FNI.

18.
Cell Rep ; 42(11): 113424, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963015

RESUMO

Depletion of CD8+ T cells is a major obstacle in immunotherapy; however, the relevant mechanisms remain largely unknown. Here, we showed that prostate cancer (PCa) cell-derived exosomes hamper CD8+ T cell function by transporting interleukin-8 (IL-8). Compared to the low IL-8 levels detected in immune cells, PCa cells secreted the abundance of IL-8 and further accumulated in exosomes. The delivery of PCa cell-derived exosomes into CD8+ T cells exhausted the cells through enhanced starvation. Mechanistically, exosomal IL-8 overactivated PPARα in recipient cells, thereby decreasing glucose utilization by downregulating GLUT1 and HK2 but increasing fatty acid catabolism via upregulation of CPT1A and ACOX1. PPARα further activates uncoupling protein 1 (UCP1), leading to fatty acid catabolism for thermogenesis rather than ATP synthesis. Consequently, inhibition of PPARα and UCP1 restores CD8+ T cell proliferation by counteracting the effect of exosomal IL-8. This study revealed that the tumor exosome-activated IL-8-PPARα-UCP1 axis harms tumor-infiltrating CD8+ T cells by interfering with energy metabolism.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Linfócitos T CD8-Positivos , Interleucina-8/metabolismo , Evasão da Resposta Imune , PPAR alfa/metabolismo , Neoplasias da Próstata/metabolismo , Exossomos/metabolismo , Ácidos Graxos/metabolismo
19.
BMC Psychiatry ; 23(1): 871, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996803

RESUMO

BACKGROUND: Job stress has significant influence on the mental health of health care providers. The mental health and job stress of operating room nurses remain unclear. This study aimed to evaluate the mental health and job stress of nurses in surgical system in China, to provide evidences for clinical nurse management and care. METHODS: The nurses in the surgical system of our hospital were investigated by questionnaire in December 2022. The general information questionnaire, symptom check list 90 (SCL-90) and nurses' job stressor scale (NJSS) were used for data collection. Pearson correlation and logistic analysis were conducted to evaluate the related influencing factors. RESULTS: A total of 171 nurses in surgical system were investigated. The mental health level of nurses in operating room was low. The job pressure of the nurses in the operating room was in the middle level. The nursing profession and work, workload and distribution, working environment and resources, patient care, management and interpersonal relationship were all positively correlated with SCL-90 score of nurses in operating room. Logistic regression analysis indicated that age, year of work experience, professional ranks and titles both are the influencing factors of SCL-90 score and of nurses in operating room. CONCLUSIONS: The mental health of nurses in surgical system is affected by work pressure, ages, working years and professional titles. These factors should be considered in the psychological intervention of nurses in operating room in order to improve the health of clinical nurses.


Assuntos
Enfermeiras e Enfermeiros , Recursos Humanos de Enfermagem no Hospital , Estresse Ocupacional , Humanos , Saúde Mental , Hospitais , Inquéritos e Questionários , China , Satisfação no Emprego , Recursos Humanos de Enfermagem no Hospital/psicologia
20.
Redox Biol ; 68: 102952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944384

RESUMO

Tamoxifen (TAM) resistance remains a major obstacle in the treatment of advanced breast cancer (BCa). In addition to the competitive inhibition of the estrogen receptor (ER) signaling pathway, damping of mitochondrial function by increasing reactive oxygen species (ROS) is critical for enhancing TAM pharmacodynamics. Here, we showed that RelB contributes to TAM resistance by inhibiting TAM-provoked ferroptosis. TAM-induced ROS level promoted ferroptosis in TAM-sensitive cells, but the effect was alleviated in TAM-resistant cells with high constitutive levels of RelB. Mechanistically, RelB inhibited ferroptosis by transcriptional upregulating glutathione peroxidase 4 (GPX4). Consequently, elevating RelB and GPX4 in sensitive cells increased TAM resistance, and conversely, depriving RelB and GPX4 in resistant cells decreased TAM resistance. Furthermore, suppression of RelB transcriptional activation resensitized TAM-resistant cells by enhancing ferroptosis in vitro and in vivo. The inactivation of GPX4 in TAM-resistant cells consistently resensitized TAM by increasing ferroptosis-mediated cell death. Together, this study uncovered that inhibition of ferroptosis contributes to TAM resistance of BCa via RelB-upregulated GPX4.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...